skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stupp, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ma, S (Ed.)
    The Maximally Informative Next Experiment or MINE is a new experimental design approach for experiments, such as those in omics, in which the number of effects or parameters p greatly exceeds the number of samples n (p > n). Classical experimental design presumes n > p for inference about parameters and its application to p > n can lead to over-fitting. To overcome p > n, MINE is an ensemble method, which makes predictions about future experiments from an existing ensemble of models consistent with available data in order to select the most informative next experiment. Its advantages are in exploration of the data for new relationships with n < p and being able to integrate smaller and more tractable experiments to replace adaptively one large classic experiment as discoveries are made. Thus, using MINE is model-guided and adaptive over time in a large omics study. Here, MINE is illustrated on two distinct multi-year experiments, one involving genetic networks in Neurospora crassa and a second one involving a Genome Wide Association Study or GWAS in Sorghum bicolor as a comparison to classic experimental design in an agricultural setting. 
    more » « less
    Free, publicly-accessible full text available March 26, 2026